

HTTP to screen

Vincent Sanders

Intelligent design?

● Started as trivial declarative tagged markup
● Exploded and fragmented into many dialects
● W3C attempted some standardisation
● Best we have now is living standards

Anatomy of a browser

● User Interface

Anatomy of a browser

● User Interface
● Browser Engine

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

https://url.spec.whatwg.org/

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

– JavaScript

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

– JavaScript

– Plotting

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

– JavaScript

– Plotting

– Persistent storage

Browser Engine

● Orchestrates all the other components

Image Renderers

● Process raw data from protocol handler
● Convert to representation suitable for plotting
● Has to be massively robust

Other Renderers

● Other formats like PDF
● Converts to representation suitable for plotting
● Must be robust

HTML Renderer

● Where HTML gets converted to actual plotting

HTML

Content tree

Render tree

Pixels

Render list

Main flow parsing

● Parse HTML into render tree

Main flow rendering

● Create render tree from content tree

Man flow layout

● Convert the render tree to a render list

Main flow plotting

● Use the render list to put pixels on screen

Example flow

HTML Parsing

● Not context free grammar
● Another living specification

<html>
 <body>
 <p>
 Hello World
 </p>
 <div> </div>
 </body>
</html> HTMLHtmlElement

HTMLBodylElement

HTMLParagraphlElement HTMLDivElement

Text HTMLImageElement

HTML Parsing

● HTML parsing is re-entrant!

HTML Parsing

● HTML parsing is re-entrant!

HTML Parsing

● When it is over there is still lots to do.

Parser Error Handling

● Browsers never error out.

CSS Parsing

● Is context free
● Well specified

Render tree

Render tree

Layout

● Converts the render tree to a render list
● Recursive process
● Co-ordinates relative to top left of viewport
● Makes concrete decisions on where the render

objects are placed.

Plotting

● Putting the pixels on screen

But wait, there is more!

● Dynamic content

Any Questions?

HTTP to screen

Vincent Sanders

Introduce self

Mention Cosworth sponsorship and are hiring.

Going to take a look at what it takes for a web browser to display
something

Intelligent design?

● Started as trivial declarative tagged markup
● Exploded and fragmented into many dialects
● W3C attempted some standardisation
● Best we have now is living standards

Sir Tim invented the web in the early nineties and it was all simple
text documents edited by hand.

Then everyone saw it was good and hacked and hacked and
hacked.

Lots of features like images and CSS for styling and less usefully
marquee. This was web 1.0

We ended up with “best viewed in” and were in danger of walled
gardens

Then came web 2.0 and javascript and it got a whole lot worse.

W3C “standardisation” helped a bit and now we have living
standards which are just a polite way of tracking what most
browsers actually do.

Anatomy of a browser

● User Interface

The high level elements of a browser are relatively easy to identify,
if rather challenging to implement

The user interface is all the “stuff” around the displayed web page.

Rather startlingly this is not specified formally anywhere.
Convention causes most browsers to have the usual address
bar, the back/forward/home etc. but this is because “that is how
everyone does it”

NetSurf takes the approach of splitting these into numerous native
toolkit “frontends”.

Other browsers seek to make their furniture common across as
many OS and toolkits as possible.

Pros and cons to both approaches native app vs familiar UI

Anatomy of a browser

● User Interface
● Browser Engine

The Browser engine controls the interactions
between the UI and the other browser elements

It initiates the fetches given a URI and manages the
browsing contexts (tabs, windows etc)

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine

responsible for displaying requested content.

For example if the requested content is HTML, the rendering
engine parses HTML and CSS, runs javascript and displays the
parsed content on the screen.

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

Support elements is a catch all for everything needed
to support the other elements.

Protocol handlers for dealing with http etc. NetSurf
chose to wrap curl but many other browsers
implement their own.

For years RFC2616 was the http reference but now
we have RFC7230 to RFC7235 and http2 in
RFC7240. Given the thousands of pages of spec
one can immediately understand the complexity
here

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

URL handling (there is a living standard for that)
https://url.spec.whatwg.org/ complete with utf-8 and
IDNA handling nightmares. fix DNS? No! Lets add
a hideously complex encoding instead

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

– JavaScript

JavaScript engine. Limited options until recently.
Mozilla had Spidermonkey and Google had V8.
Recently both of those have become
implementation details of their browsers and are no
longer easily usable libraries.

Duktape is a nice library NetSuf is using with a great
upstream, focus on size rather than speed but that
fits.

The engine is bolted to the browser through
interfaces defined in WebIDL throughout the
specs...all over the place. Extracted by scraping
the specs

>400 interfaces (classes) >4000 operations and
attriutes (methods and properties) NetSurf uses a
tool to generate c to glue the js interfaces to the
DOM

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

– JavaScript
– Plotting

Plotting and compositing. The render component
needs to be able to get pixels on screen and there
needs to be a library for it. In NetSurf its intimately
tied to the UI so uses cairo on GTK and GDI on
windows. Firefox and Chrome have similar
components

Anatomy of a browser

● User Interface
● Browser Engine
● Render Engine
● Support elements

– Protocol handlers

– URL handling

– JavaScript
– Plotting

– Persistent storage

Persistent data storage, a browser needs to store
cookies, page scroll offsets, favicons and all
manner of state. Add in javascript local storage and
websql and you need a robust storage solution.

Browser Engine

● Orchestrates all the other components

This component is largely ignored when speaking about browsers.
The render engines gets all the glory.

This component causes objects to be fetched using the protocol
handlers, ensures the correct renderer component is used I.e
html renderer for text/html or jpeg renderer for binary/jpeg often
performs the content snooping spec to derive the correct mime
type

Yes it is terrifying how many web servers give completely incorrect
mime types out often icons are pngs, jpegs are gifs etc.

It maps the UI to the browsing contexts so the contents of each
window or tab is what its supposed to be and the UI can show all
the right things about the page like bookmark status and security
certificates.

Also ensures periodic things like cache management happen.

Image Renderers

● Process raw data from protocol handler
● Convert to representation suitable for plotting
● Has to be massively robust

There are several image renderers, one for each supported image
mime type

One of these for each image type gif, png, jpeg, bmp webp. Well ok
maybe not webp ;-)

These renderers get fed a lot of garbage. Some tests while
developing NetSurf renders showed that over 10% of the webs
images have one issue or another. Browsers cannot return
errors so we just have to do the best we can.

For even reasonable performance these renderers need to employ
several methods to get the pixels plotted quickly.

The source image formats are efficient for transfer but rarely for
plotting so often renderers use uncompressed internal
representations to make plotting rapid.

This introduces the problem that raw bitmaps are huge, so images
only get converted when used and that data cached and
discarded when the images are not being plotted

Other Renderers

● Other formats like PDF
● Converts to representation suitable for plotting
● Must be robust

These renderers handle everything that is not html. So pdf or
plugins

These are just like image renderers but may use other renderers
for images etc.

PDF tools never have bugs of course

HTML Renderer

● Where HTML gets converted to actual plotting

HTML

Content tree

Render tree

Pixels

Render list

Just like the other renderers this one converts the source data
(HTML) into pixels

Referred to as the “main flow”

Main flow parsing

● Parse HTML into render tree

Parse the html to generate a content tree. Not strictly a DOM tree
because browsers heavily augment this tree

Main flow rendering

● Create render tree from content tree

The content tree is used to build another tree, by parsing the style
data, both in external CSS files and in style elements. Styling
information together with visual instructions in the HTML will be
used to create the render tree.

The render tree contains rectangles with visual attributes like color
and dimensions. The rectangles are in the right order to be
displayed on the screen.

Man flow layout

● Convert the render tree to a render list

The render tree undergoes layout which gives it absolute positions
within a viewport (browser window :-) to generate a render list of
actual operations that need plotting.

Main flow plotting

● Use the render list to put pixels on screen

The next stage is plotting (painting) the render list will be traversed
and each node will be painted using the UI and you get cat
pictures

Example flow

Flow diagram from webkit

All browsers internal HTML flow looks like this, the details differ
considerably but the overall shape is the same.

HTML Parsing

● Not context free grammar
● Another living specification

<html>
 <body>
 <p>
 Hello World
 </p>
 <div> </div>
 </body>
</html> HTMLHtmlElement

HTMLBodylElement

HTMLParagraphlElement HTMLDivElement

Text HTMLImageElement

The parser takes the text from the protocol handler as it arrives
over the network and turns it into a dom tree.

As each DOM node is inserted listeners are called to perform
actions like causing css, images and scripts to be fetched.

The render tree constructor also sits and builds its tree.

Why is this hard?

Because html has to forgive so much and still “work” the parser
cannot be context free - actually it is much, much worse than this

Standards for tokenizing and tree construction but they are “loose”
by definition because HTML accepts almost anything as input..

HTML Parsing

● HTML parsing is re-entrant!

When the parser inserts a script element into the dom tree that
script has to be executed there and then.

The script can then call document.write()

That inserts text directly into the parse stream. Oh and yes, you
can then insert scripts in your scripts.

HTML Parsing

● HTML parsing is re-entrant!

Turtles all the way down!

OK those are terrapins from a public domain image off wikipedia

HTML Parsing

● When it is over there is still lots to do.

When the parse completes there is still much to do.

Any defered javascript or css file loads must be completed, and
events delivered for complete and the infamous ”onload”

Parser Error Handling

● Browsers never error out.

Browsers never return an error to the user, they will try and deal
with anything.

Error handling is quite consistent in browsers, but amazingly
enough it hasn't been part of HTML specifications. Like
bookmarking and back/forward buttons it's just something that
developed in browsers over the years.

There are known invalid HTML constructs repeated on many sites,
and the browsers try to fix them in a way conformant with other
browsers.

The whatwg living specification does define some of these
requirements but fundamentally it is all convention

CSS Parsing

● Is context free
● Well specified

CSS is relatively well specified and can be parsed in a more
traditional manner.

Grammar in BNF etc.

Still cannot rely on completely correct input but it is better

Ordering is hard. As noted scripts can be executed mid parse and
if the css the script uses has not been loaded the script
execution must wait until the stylesheet is available

Render tree

Ok that is the DOM tree built. But while that was happening the
render tree was also being constructed.

This tree is of visual elements in the order in which they will be
displayed.

 It is the visual representation of the document.

The purpose of this tree is to enable painting the contents in their
correct order.

Firefox calls the elements in the render tree "frames".

WebKit uses the term renderer or render object

NetSurf refers to them as render boxes. Its all the same thing
.
A renderer object knows how to lay out and paint itself and its

children.

Render tree

The renderers correspond to DOM elements, but the relation is not
one to one. Non-visual DOM elements will not be inserted in the
render tree. An example is the "head" element.

Also elements whose display value was assigned to "none" will not
appear in the tree (whereas elements with "hidden" visibility will
appear in the tree).

Building the render tree requires calculating the visual properties of
each render object. This is done by calculating the style
properties of each element.

The style includes style sheets of various origins, inline style
elements and visual properties in the HTML (like the "bgcolor"
property).The later is translated to matching CSS style
properties.

There is much, much more to how CSS and the render tree
interoperate but I have a time limit.

Layout

● Converts the render tree to a render list
● Recursive process
● Co-ordinates relative to top left of viewport
● Makes concrete decisions on where the render

objects are placed.

When the renderer is created and added to the tree, it does not
have a position and size. Calculating these values is called
layout or reflow.

HTML uses a flow based layout model, meaning that most of the
time it is possible to compute the geometry in a single pass.
Elements later ``in the flow'' typically do not affect the geometry
of elements that are earlier ``in the flow'', so layout can proceed
left-to-right, top-to-bottom through the document. There are
exceptions: for example, HTML tables may require more than
one pass

Layout is a recursive process. It begins at the root renderer, which
corresponds to the <html> element of the HTML document.
Layout continues recursively through some or all of the frame
hierarchy, computing geometric information for each renderer
that requires it.

The position of the root render object is 0,0 and its dimensions are
the viewport–the visible part of the browser window.

All render objects have a "layout" method, each render object
invokes the layout method of its children that need layout.

Plotting

● Putting the pixels on screen

In the plotting or painting stage, the render tree is traversed and
the renderer's "paint()" method is called to display content on the
screen. Painting uses the UI infrastructure component.

CSS2 defines the order of the painting process. This is actually the
order in which the elements are stacked in the stacking contexts.
This order affects painting since the stacks are painted from
back to front. The stacking order of a block renderer is:

background color
background image
border
children
Outline

Practical implementations use various acceleration techniques to
make this faster. The state of the art has changed with modern
GPUs meaning the paint stage has become less of a bottleneck.

But wait, there is more!

● Dynamic content

That takes care of the main flow. But that is not the end of the
story. Thanks to the wonders of dynamic content the DOM can
be modified.

Modifying the DOM changes the render tree which causes (partial)
layout that causes repaint.

 Used to be small things like onclick which were user driven

But now we have canvas and webgl and timer driven redraw and
the whole DOM can be re-written. The web is full of many
horrors.

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

