

The care of open source creatures

Vincent Sanders

https://www.flickr.com/photos/30540563@N08/11173501243/in/photolist-i2n7Da-8pdUC8-8dDmR2-azxPLq-62ZvRF-62ZwU4-634NnC-634LSf-634Nxf-634Hry-634Fq1-634N5A-62ZsdK-634G3q-634Mzd-62ZwxZ-634PiG-62ZsZB-634KF9-634JkC-62ZvDK-634Neu-62ZBbT-62Zzdz-634K45-634QxS-62ZxLx-634QbA-62Zv5r-634H89-62Ztfr-62Zvet-634GoS-634QnL-634JxA-62Zz64-99HDuk-aGGfSZ-87ynNr-6EPcKN-f8ae2J-hC9WtT-eLNJXX-cWdGK9-eV2s2Z-eW4ELw-bzdtAm-dyC6sq-9hzwzV-2GJXF6/

What am I on about?

An examination of:
● What a services a project ought to have
● What options exist to fulfil those requirements
● A practical look at some implementations.

http://en.wikipedia.org/wiki/Application_lifecycle_management

Open Source Life Cycle

● Planning

● Building

● Releasing

● Implementing

● Quality assurance

Planning

● Planning is usually a social activity
● Important to keep track of decisions
● Communication tools developers actually use
● Flexibility to achieve releases

Planning Infrastructure

● IRC – creating channels on free networks like
oftc or freenode is easy

● Email lists are less popular but easy way to
communicate with lots of people

● Forums are easy to setup but can degenerate
quickly

● Communication with users can occur here to
get an idea of what they say they want.

Planning Infrastructure

● A wiki is good for longer term info

Implementing

● Code style
● Code documentation

Implementing source control

● Source control is mandatory
● GIT won the argument
● Have a merge policy
● Have a review policy

Implementing source control

● Gitano and cgit are great

Building

● Master branch should always build
● Getting the software built should be easy
● Build process should be documented
● Continuous integration

Building with Jenkins

● Jenkins is a CI tool
● Jobs can be triggered by GIT changes
● Jobs can be periodic
● Dependences between modules
● Good mechanisms for feedback

Deploying Jenkins

Deploying Jenkins

Metrics

Quality Assurance

● Static analysis
● Unit testing
● System testing
● Issue tracking
● Metrics

Static analysis

Static Analysis

http://vincentsanders.blogspot.co.uk/2013/11/error-analysis-is-sweet-spot-for.html

Issue tracking

● All issue tracking systems are not ideal
● Go with the system that the fewest number of

developers dislike
● Remember users have to report issues with it.
● The issue tracker needs a maintainer to be

useful
● Double edged sword.

Mantis

Releasing

● All components of a project come together
● Tested build possibly with known issues
● Unreleased software does not exist
● The easier they are to make the more you do

Practical Releasing

● Create CI jobs triggered from a git tag
● Use git sub modules to create a unified source
● Use the CI system to perform build from

generated source in known build environment.

Wrapping up

● These are all the parts an open source creature
needs to thrive

● Just because a project has these components
does not mean it will survive

● The outcome should justify the effort

Any Questions?

The care of open source creatures

Vincent Sanders

Book image from GrrlScientist on flikr

What am I on about?

An examination of:
● What a services a project ought to have
● What options exist to fulfil those requirements
● A practical look at some implementations.

Application Lifecycle Management – horrid term but in
common usage

Like Team foundation Server but open source and not
crappy

If a project has more than a couple of active developers
these are the kind of things that make those people more
productive.

The infrastructure should give benefits quickly but be robust
enough to grow and adapt

Keep it simple stupid, do not waste more developer time
with infrastructure than you gain. This stuff is meant to let
you spend more time doing software

Historically sourceforge provided a lot of this, nowadays it is
github.

Open Source Life Cycle

● Planning

● Building

● Releasing

● Implementing

● Quality assurance

What are the main areas in our lifecycle?

Usually a formal approach has planning and specifications. This is
open source, generally we work by consensus and planning is
informal at best but it is there. This is not an area technology really
helps with and is more a social area. Having said that a wiki is a
cheap and easy way to make sure developers ideas do not get lost.

The source code, this is where developers spend most of their effort
and scratch their itches, we are generally pretty good at this but it
needs managing so revision control systems are needed.

Building the code in all the configurations and environments the project
supports can be hard. Continuous integration helps here

QA, Testing, everyone runs their tests all the time before they check in
their code, right? Yeah that is what I thought. Having the tests run
automatically means you know how healthy the project is

Releasing code is what it is all about. Without this users do not get
your software and Debian packages cannot be made. Again CI
helps but so does an issue tracker. Especially helpful if the issue
tracker allows you to keep track of releases useful for release notes.

Planning

● Planning is usually a social activity
● Important to keep track of decisions
● Communication tools developers actually use
● Flexibility to achieve releases

Most developers do planning in an informal way.

None of these are useful unless developers
actually use them, do not implement these
unless there is consensus they will be used.

These communication channels are also often
where potential new developers join in so its
useful to have an easy way to provide answers
to all the questions that get repeated a lot
(especially gsoc)

No plan survives contact with the enemy, learn
to be flexible and ensure your tools are too.

Planning Infrastructure

● IRC – creating channels on free networks like
oftc or freenode is easy

● Email lists are less popular but easy way to
communicate with lots of people

● Forums are easy to setup but can degenerate
quickly

● Communication with users can occur here to
get an idea of what they say they want.

Practically IRC is invaluable for
geographically dispersed groups and
helps with short term coordination

Email lists or forums are ideal ways to
 keep in contact with others for with
an more permanent record

Forums, especially user forums need
ruling with a strong hand to stop
them wandering off topic.

Planning Infrastructure

● A wiki is good for longer term info

Wiki is useful for info that is longer
term in nature and the easy
changeability means you can put
info in quickly

Needs gardening if it not to become a
spam infested waste of time.

Debian has many to choose from pick
one that suits.

Implementing

● Code style
● Code documentation

This is the bit most developers
actually want to do. Personally I love
the intellectual rewards

A project should have at least a basic
agreement on coding style to stop
edit wars breaking out

Basic inline code documentation is
useful but it needs maintaining to
remain useful

Implementing source control

● Source control is mandatory
● GIT won the argument
● Have a merge policy
● Have a review policy

Any project that does not have a easily
accessible revision control system is just plain
broken.

 I have used everything from SCCS through
SVN, bzr, perforce and sourcesafe (you may
mock me now) and some of those did some
things better but GIT won the argument, even
emacs is switching.

Make sure you have a sensible merge policy
and if you are doing code review ensure the
process is clear or it will be ignored.

Implementing source control

● Gitano and cgit are great

Gitano is an excellent git server,
encourage Daniel to develop it and
get it packaged

Cgit is a great tool especially with a
forest of trees.

Failing that there are lots of options or
githib is always there if you are
willing to use their merge/review
model. Heck you even get a basic
website interface through github if
you want.

Building

● Master branch should always build
● Getting the software built should be easy
● Build process should be documented
● Continuous integration

Software is no good if developers cannot build it.

Continuous integration is a wonderful tool to
ensure the software is always buildable

Especially important if your project has multiple
components or architectures.

The more different ways a project can be built to
more scope there is that a developer checking
in their code will not have tested the
alternatives

Building with Jenkins

● Jenkins is a CI tool
● Jobs can be triggered by GIT changes
● Jobs can be periodic
● Dependences between modules
● Good mechanisms for feedback

If you are using github their
infrastructure integrates travis CI for
the rest of us jenkins is probably
least bad.

The web based interface and large
number of plugins make it easy to
deploy.

Start with a small number of jobs and
build up means large reward for
small initial investment.

Deploying Jenkins

DEMO

I deployed jenkins for the netsurf
project more than 18months ago

Started with small number of jobs and
now now it build all the libraries and
netsurf for 9 OS

Netsuf job builds multiple
configurations (with clang and gcc
for nine tookits)

Deploying Jenkins

Jobs can be added to ensure things
like the code documentation (via
doxygen) is updated at the same
time as code is built.

Metrics

Can add other jobs like metrics but
sites like oholu now black duck open
hub provide these and this kind of
info is not hugely helpful

Quality Assurance

● Static analysis
● Unit testing
● System testing
● Issue tracking
● Metrics

Static analysis is a powerful tool that can help find
issues before your users do. It is only part of the
story but works best when automated and a
developer does not have to do anything. No new
regressions is helpful target with this.

A project should have at least some basic unit testing
although this gets missed a lot. Again automation of
running the tests is best. Gamification helps

System testing is hard but useful if it can be
implemented.

An issue tracker is a useful tool both for keeping track
of QA issues and for bugs found by users in
releases.

Metrics are pretty but do not serve much beyond that

Static analysis

Static analysis is powerful for netsurf
we have CI jobs that run scan-build
(clang) , cppcheck and the
proprietary but free (beer) coverity

The free tools are ok but have a lot of
false positives and are difficult to
manage.

Static Analysis

Coverity is much easier to use and worthwhile
looking at fro any open source project as you
can use their free scan service.

I wrote a lot about this in a blog post
Error analysis is the sweet spot for improvement

Issue tracking

● All issue tracking systems are not ideal
● Go with the system that the fewest number of

developers dislike
● Remember users have to report issues with it.
● The issue tracker needs a maintainer to be

useful
● Double edged sword.

Issue trackers seem to be like mail clients, they all suck,
some less than others

If your project went with github they have an integrated
solution, if not practical options are basically bugzilla, trac
or mantis

Bugzilla is ubiquitous and hard to admin.

Trac gives you a wiki as well as issue tracker and source
viewer but forces a workflow

Mantis is very simple, is usable without javascript/html5
features making it fast to use. The simplicity could be
limiting if your project needs more but remember the
maintenance burden.

Users need training in whatever tool, its a big investment.

Mantis

Netsurf deployed mantis

Importing the old data from sourceforge took a
lot of time and we never look at the historical
data

I spend an hour a week minimum just ensuring
new bugs are acknowledged and basic triage.

We benefit from it by users reporting issues with
CI builds quickly

We have a large backlog of unreproducible
crash bugs on minority platforms which appear
to be caused by external factors. Users feel
slighted if you just close them.

Releasing

● All components of a project come together
● Tested build possibly with known issues
● Unreleased software does not exist
● The easier they are to make the more you do

A release is an opportunity for the developers to get
all the moving parts of their project in a state it can
be used by non-developers

Allows more in depth QA and gives confidence to
users they can update.

As far as users are concerned if it is unreleased the
software does not exist.

The easier the release process is for developers the
less anxiety over a release there is.

One strategy is to use the CI system to publish
builds all the time so the difference between a
release build and a CI build is negligible aka
continuous deployment

Practical Releasing

● Create CI jobs triggered from a git tag
● Use git sub modules to create a unified source
● Use the CI system to perform build from

generated source in known build environment.

Release process for sub modules is as simple as
git tag -s -m 'Official Release'
release/<version number>

 git push --tags

Then updating the sub modules in the netsurf-all repo
 and pushing a signed tag to that

CI will generate the source tarballs and build them
without human involvement. Release can be
mechanically generated in under 30 minutes. Most
time is spent checking we are releasing what we
intend to.

Process in wiki

Wrapping up

● These are all the parts an open source creature
needs to thrive

● Just because a project has these components
does not mean it will survive

● The outcome should justify the effort

The health of open source projects, like any
creature, are not solely dependant on the
care given to them. If there is no demand
for the software then a project will die as
developers move away and do something
more interesting but without care a project
will definitely fail

Developers should always consider the
overhead of implementing things and
ensure they will get a worthwhile return

I once killed a Tamagotchi in 90 minutes,
maybe there are better ways.

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

